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The linear stability of boundary-layer flow over compliant or flexible surfaces has been 
studied by Carpenter & Garrad (1985), Yeo (1988) and others on the assumption of 
local flow parallelism. This assumption is valid at large Reynolds numbers. Non- 
parallel effects due to growth of the boundary layer gain in significance and importance 
as one gets to lower Reynolds number. This is especially so for a compliant surface, 
which can sustain a variety of wall-related instabilities in addition to the 
Tollmien-Schlichting instabilities (TSI) that are found over rigid surfaces. The present 
paper investigates the influence of boundary-layer non-parallelism on the TSI and wall- 
related travelling-wave flutter (TWF) on compliant layers. Corrections to the growth 
rate of locally parallel theory for boundary-layer non-parallelism are obtained through 
a multiple-scale analysis. The results indicate that flow non-parallelism has an overall 
destabilizing influence on the TSI and TWF. Flow non-parallelism is also found to 
have a very strong destabilizing effect on the branch of TWF that stretches to low 
Reynolds number. The results obtained have important implications for the design and 
use of compliant layers at low Reynolds numbers. 

1. Introduction 
The stability of boundary-layer flow over compliant or flexible surfaces has evoked 

considerable interest in recent years. Besides the intrinsic scientific interest, this 
attention has also been motivated by the potential applications of compliant surfaces 
as transition-delaying devices and related uses in the area of flow noise control. The 
idea of using compliant surfaces to stabilize boundary-layer flow has generally been 
attributed to Kramer (1960). 

Thanks to the works of the early pioneers, notably Benjamin (1960, 1963) and 
Landahl (1962), it is by now well-known that laminar boundary layers over flexible 
surfaces are susceptible to a wide range of instabilities : Tollmien-Schlichting 
instabilities (TSI), travelling-wave flutter (TWF), static divergence instability and 
Kelvin-Helmholtz (KH) instability. The last three instabilities have their origin in wall 
flexibility and have been termed collectively flow-induced surface instabilities (FISI) by 
Carpenter & Garrad (1985) and compliance-induced flow instabilities by Yeo (1986, 
1988). The linear stability of flow over plate surfaces and viscoelastic layers has been 
studied in great detail by Carpenter & Garrad (1985, 1986) and Yeo (1986, 1988) 
respectively. They found that the flow over compliant walls with suitable properties 
may indeed be stabilized. On the experimental front, Gaster (1987) demonstrated 
convincingly that flexible viscoelastic layers can indeed reduce the growth of 
disturbance waves in boundary layers. Moreover, the observed growth of the 
disturbance waves is in broad agreement with theoretical predictions. Compliant walls 
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with novel Grosskreutz-type properties (Grosskreutz 1971) have been investigated by 
Carpenter & Morris (1990) and Yeo (1986, 1990) and found to possess the potential 
for delaying transition. The stability of three-dimensional linear wave modes over 
compliant surfaces has also been studied. Yeo (1986, 1992) and Joslin, Morris & 
Carpenter (1991) found that properly designed compliant walls are able to stabilize 
three-dimensional linear wave modes and hence achieve significant delay of transition, 
even though these modes may grow more rapidly than two-dimensional ones. The 
status of compliant-wall flow stability research was recently reviewed by Carpenter 
(1990) and Riley, Gad-el-Hak & Metcalfe (1988). 

With the linear aspects reasonably well studied, the last few years have witnessed a 
burgeoning of interest in the nonlinear- and secondary-instability aspects of compliant- 
wall boundary-layer flow stability; see Joslin & Morris (1992), Thomas (1992) and 
others. J o s h  & Morris found that wall compliance has a suppressing influence on 
secondary instability of Herbert-type (Herbert 1984). Thomas found that a flexible wall 
response greatly enriches the possibilities for the occurrence of Craik-type resonant 
triads (Craik 197 l), with some triad combinations displaying exceptionally large 
interaction coefficients. In the enthusiasm to investigate the interesting problems of the 
post-linear regimes, a potentially important aspect of compliant-wall boundary-layer 
instability, namely the boundary-layer non-parallelism, has been largely overlooked, 
with the exception of a short paper by Carpenter & Sen (1990). The focus of the present 
paper is on the effects of boundary-layer non-parallelism on compliant-wall flow 
stability. This non-parallelism arises from the growth of the boundary layer as it 
develops downstream. There has been fairly extensive investigation into the effects of 
the non-parallelism on boundary layers over rigid walls. Below, we briefly review the 
important developments in that area because of their direct relevance to the present 
study. 

The effect of flow divergence or non-parallelism on boundary-layer stability over 
rigid surfaces was extensively studied in the seventies by Barry & Ross (1970), Bouthier 
(1972, 1973), Gaster (1974), Saric & Nayfeh (1975), Smith (1979) and others. The 
objective of these studies was to explain the differences which had emerged between 
experimentally determined neutral stability results and accurately computed locally 
parallel-flow results which had become available then ; the earlier asymptotic 
predictions of Shen (1954) were in substantially better agreement with the experimental 
results. A particularly important non-parallel work of this period is Gaster (1974). 
Gaster employed a scheme of successive approximation to determine the leading-order 
O(s) non-parallel correction to an accurately computed locally parallel solution of the 
Orr-Sommerfeld (0s) equation, which is applicable strictly to parallel flow. A similar 
type of O(c) correction, based on a multiple-scale expansion, was developed by Saric 
& Nayfeh. Gaster’s work is particularly significant in the emphasis he placed on the 
definition of disturbance growth. His results revealed strong dependence of the neutral 
curves on the criterion of disturbance growth, hence demonstrating that meaningful 
comparison can only be made between theoretical predictions and experimental results 
if identical criteria of growth are used. Unfortunately, Gaster’s results show a critical 
Reynolds number of 480 which, while representing an improvement over the locally 
parallel prediction of 520, is still significantly above the 400 obtained in the experiments 
of Schubauer & Skramstad (1947) and Ross et al. (1970). Saric & Nayfeh’s results 
showed rather better agreement with the experimental results, but it turned out that the 
criterion of disturbance growth they had used was incompatible with the modes of 
experimental measurements. This was rectified in a subsequent publication (Saric & 
Nayfeh 1977). Gaster’s results were verified by the independent calculations of Van 
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Stijn & Van de Vooren (1983) using a different procedure. The multiple-scale approach 
to obtaining the O(F) correction for non-parallelism was also used by Bridges & Morris 
(1987), who propose an alternative neutral-curve criterion. 

Two other non-parallel works, generically different in approach from the works cited 
above and from each other, should also be mentioned. Smith (1979) applied a triple- 
deck asymptitic scheme to the non-separable partial differential equations of linear 
flow stability to develop the non-parallel lower neutral branch of TSI. His scheme has 
been regarded by some as a more rational approach to non-parallel stability 
calculations because it treats all terms of equal order in the basic flow and the 
governing equations together, whereas in the correction approach of Gaster and 
others, some of the higher-order terms are embedded within the 0 s  base solution. 
However, owing to its sole reliance on asymptotics to develop the solution, Smith’s 
non-parallel results are affected by slow convergence in the parallel-flow part of the 
series (see his figure 1). The correction approach, on the other hand, is highly expedient 
in utilizing an available accurate numerically solved parallel-flow solution as a starting 
point. The Smith scheme is also more complex to apply because the mathematical 
character of the decks must be selected to match the anticipated solution 
eigenstructures, which can differ for different instabilities or different parts of the same 
instability, and additional decks may have to be introduced accordingly. Overall, the 
correction approach is easier to apply when many different instabilities are to be 
considered. The effectiveness of the correction approach was recently verified by Fasel 
& Konzelmann (1990) in a work of a completely different style. Fasel & Konzelmann 
investigated the problem of boundary-layer non-parallelism through a direct numerical 
integration of the Navier-Stokes equations. In spite of the distinctly different 
methodology, their results display remarkable agreement with the neutral curves of 
Gaster (1974) and Bridges & Morris (1987). Their results therefore affirm the essential 
soundness of Gaster’s scheme and the multiple-scale approach in developing 
corrections to locally parallel results, and the adequacy of the leading-order correction 
O(s) that has hitherto been applied. Fasel & Konzelmann attributed the differences 
between their results and the experimental results to possible unknown bias in those 
experiments, which were conducted in the 1940s and the late 1960s. 

The effects of boundary-layer non-parallelism on flow stability over plate-type 
compliant surfaces were recently studied by Carpenter & Sen (1990). Their non-parallel 
stability calculation, which differs methodologically from those described above, is 
based on an extended form of the 0s equation, which is purported to account for all 
non-parallel effects to O(2) .  Some neutral stability curves and maximum amplification 
results pertaining to the growth of TS waves were presented, but the associated 
physical entity was not clearly defined. They found the effects of non-parallelism on 
their TSI to be generally small, albeit a little stronger than for rigid-wall TSI. They did 
not, however, investigate the effects of non-parallelism on the FISI, which comprises 
among others, the static-divergence, the KH and the TWF instabilities. Boundary- 
layer non-parallelism holds little significance for the static-divergence and KH 
instabilities, which are reckoned to be strong absolute instabilities. The TWF, on the 
other hand, is a convective instability that occurs frequently on compliant walls which 
exhibit potential for delaying transition. The effects of non-parallelism on TWF modes, 
and in particular the low-R, B, branch (see Yeo 1988), is as yet unknown and is of 
special interest here. 

The present paper investigates the two-dimensional non-parallel stability of 
boundary-layer flow over layered compliant walls. A correction scheme was used 
because of the availability of accurate locally parallel O(eo) solutions (Ye0 1986, 1988) 
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Layer 2 
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FIGURE 1. Boundary-layer flow over a multi-layer compliant wall : (x, z ) ( ~ )  is the global reference 
frame for the stability problem; (x,~) is the local coordinate frame with origin at (xy),O). 

which can serve as bases for perturbation. The multiple-scale form was chosen in 
preference to Gaster’s scheme because of its well-established procedure and fairly 
straightforward application to the present problem. At O(el), the growing equations of 
the flow, the wall and the boundary conditions are mostly non-homogeneous. The non- 
homogeneous wall perturbation equations are solved in closed form (involving 
quadrature). A non-parallel correction of O(cl) to the O(co) spatial growth rate of the 
locally parallel theory is obtained via the solvability condition for the O(d) problem. 
The solvability condition assumes a fairly complex form because of the presence of 
non-homogeneous high-order derivative boundary conditions at O($). 

2. Theoretical formulation 
Figure 1 shows schematically a two-dimensional boundary-layer flow over a 

compliant wall which may comprise one or more uniformly thick layers of 
homogeneous isotropic viscoelastic materials, backed by a rigid base. The global 
coordinate frame, which may also be assumed to be the dimensional coordinate frame, 
for the stability problem is (x, z ) ( ~ ) ,  which has its positive x-axis pointing in the 
streamwise direction. The surface of the compliant wall in the unperturbed state spans 
the (.x,y)(d)-plane at z@) = i f )  = 0. 

The physical system of boundary-layer flow and compliant wall is assumed to be 
perturbed by a very small disturbance oscillating with a real frequency w. We are 
interested in the spatial evolution (development) of such wavy disturbances, taking into 
account the slow variation of the boundary-layer velocity profile in the streamwise 
direction. A multiple-scale perturbation scheme is employed to decouple the rapid scale 
of wavy motion from the slow modulating scale of boundary-layer growth. The 
multiple-scale analysis is applied below to the equations governing the perturbations 
in the flow domain, a single-layer compliant wall, and the interface boundary 
conditions in $52.1,2.2 and 2.3 respectively. In $2.4, the locally parallel f low eigenvalue 
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problem is posed and corrections to the parallel-flow spatial eigenvalue based on various 
criteria of disturbance growth are developed. Extension of the theory to multi-layer 
walls is taken up in $2.5. 

2.1. Flow stability equations 

Before proceeding with the formal theoretical development, it is appropriate to state 
clearly the reference frame and the scaling parameters. The dynamics of wave 
perturbations in the flow is considered here in a local rectangular Cartesian frame 
( x , z )  with its origin at ( x , , O ) ( ~ )  in the global frame, see figure 1. The non- 
dimensionalization reference scales for the local frame (x, z )  are : S:d), the dimensional 
displacement thickness of the boundary layer at (xT, 0)(@; U g ) ,  the dimensional free- 
stream velocity of the boundary layer; and #), the dimensional density of the 
incompressible fluid flow. The superscript ( d )  denotes that the quantity is dimensional 
or of the global reference frame. All quantities in this section are assumed to have been 
non-dimensionalized with respect to the above scaling parameters unless otherwise 
indicated. 

Let Y(x, z )  denote the stream function of the basic flow field. The basic flow field is 
perturbed by a small disturbance of frequency w having a stream function of the form 
$(x, z)  ePiut. The stream function of the disturbed flow !P (x , z ,  t )  = Y(x,z)+ 
$(x, z )  e@” must necessarily satisfy the Navier-Stokes equations. By substituting luT 
into the Navier-Stokes equations, subtracting out the basic flow components and 
keeping only terms which are linear in $, we obtain 

where V2 is the Laplacian in x and z and R, = Ug)Sid)py)/,uy) is the Reynolds number 
based on displacement thickness Sy). The disturbance $ is coupled to a corresponding 
disturbance in the wall (see $2.3) and is assumed to decay to zero as z+m. 

The basic flow of interest here is the zero-pressure-gradient semi-infinite-plate 
boundary-layer whose stream function is given by 

Y(x, z ;  R,) = [me(x, + x)]”’f(7)  + 0 x c, 7 = [rnE(X, + x)]l’’ ’ 

where x, = x : ~ ) / @ ~ ) ,  E = m/R,  and , f ( ~ )  satisfies the Blasius equation 

2f”’+m’ff’/ = 0 (2.3) 
subject to the boundary conditionsf(0) =f’(O) = 0 andf’(r)+O as ~ + m .  The prime 
in (2.3) denotes an ordinary derivative with respect to 7.  A value of m = 1.72078, 
corresponding to 7 = 1 .O being the displacement thickness, is used here. It is noted that 
~(x, z)  = z along x = 0 because rncx, = 1 .  

2.1.1. Multiple-scale analysis for flow disturbances 

Boundary-layer non-parallelism arises from the variation of the basic stream 
function Y given by (2.2) with respect to the streamwise variable x. This variation is 
slow because t‘ = m/R,  is a small quantity in the R, range of interest. To apply a 
multiple-scale analysis, we introduce the two independent spatial variables x, = x and 
x, = ex and assume all the dependent variables to be functions of these spatial 
variables. The basic velocity field is then expanded as 

(2.4a) 
(2.4b) 

U(x,  z)  = a, Y(x*, z )  = &(XI, z) + E Y ( X * ,  2) + . . . , 
w ( ~ ,  z )  = -az qx,, z )  = w1(xl, z) + . . . , 
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where q = f ' ( r ) ,  V , O  and 

The disturbance stream function $(x,z) is expanded as 

$(x, z> = ~ O ( X 0 ,  XI, 4 + $1(x,, x1,4.. . . (2.5) 
We note that a, is equivalent to aZo+d,.. The substitution of (2.4) and (2.5) into the 
governing equation (2.1) yields 

O(e0) : ( 2 . 6 ~ )  LZ~$, = [( U, a,., - iw) V,2 - (a," q) a,., - Vt/R,] = 0, 
O ( 2 )  : 2f$l = t u, a,., + w, az - R61(a,0 a,., + "., a,)] v: $0 

+ [ - iw + u, ax., - Ri l  ViI (azo a,, + a,., a,) $0 

- [(a," aZ + (a," &) $07 (2.6b) 

where V,2 = (a:, + a,"). Equation ( 2 . 6 ~ )  is a linear partial differential equation in x, and 
z whose coefficients are either constant or depend on z through the velocity profile 
U,. It admits a separable solution of the form $, = A{ $,(z) exp (ia, x,) where A{ is a 
quantity characterizing the amplitude of the disturbance. However, if we take into 
account the fact that V, has a slow dependence on xl, then the global form of $, 
reflecting this dependence is 

wherein the amplitude A;, function $, and wavenumber 01,) are now dependent on the 
slow variable x,. This is the spatial form of the disturbances considered by Gaster 
(1974) and Saric & Nayfeh (1975). The O(el) equation (2.6b) is identical to the O(co) 
equation ( 2 . 6 ~ )  when the inhomogeneous terms on its right-hand side are set to zero. 
We therefore assume $l to have the same form of solution: 

Substituting (2.7) and (2.8) for $, and $l into (2.6), yields 

O ( 8 )  : A{ Lf$, = [( V, - w / a o )  (a," - a:) - <a," u,) 
- (ia, RJ1(t$ - 2 4  a: + a;)] A{ $, = 0, ( 2 . 9 ~ )  

O(e1) : A{ = 4 A{ + 4 a,., A;, (2.9b) 

where & and F, are functions of x1 and z given in the Appendix. The Lf in (2.9) is just 
the Orr-Sommerfeld operator and (2.9 a)  is the well-known Orr-Sommerfeld equation 
for the case of a locally parallel flow. 

2.1.2. The far-field boundary conditions 
are subjected to two sets of boundary 

conditions. One set pertains to the interaction between the disturbed flow and the 
compliant wall at their interface. This is considered in $2.3. The other set concerns the 
behaviour of the disturbance functions far away from the wall. Far away from the wall, 
the non-zero O(co) and O(2) basic flow components and W, tend to the constants 
1.0 and 0.86039 respectively. Equation (2.9a) governing $, then reduces to the 
constant-coefficient ordinary differential equation 

(2.10) 

The flow disturbance functions $, and 

Lf, $0 = [(a," - 4) (a," - x31$0 = 0, 
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where xo = [a: + iR,(ao - w)]"~, which has simple exponential solutions. Since ad- 
missible flow disturbances must clearly decay to zero as z tends to co, this implies that 
the solution for #o far away from the wall must have the form 

where Re(ao) > 0, Re(Xo) > 0. The corresponding far-field condition for the O(c') 
disturbance function $,(x,, z )  is 

(2.12) 

where the right-hand-side terms are derived from the far-field solution of $o given by 
(2.1 1). Equation (2.12) is a non-homogeneous equation whose solution has the form 

CJ~~(X,, z )  = C,, e-"oz + Cix e-Xo" + ( H ,  z + H,  z') e-"oZ + (H ,  z + H4 2') e-xo', (2.13) 

where the last two terms on the right-hand side correspond to the particular integral. 
By eliminating the coefficients COa, Cox, C,, and C,, from the solutions of $o and $, 
respectively, on the assumption that $o and are sufficiently differentiable, the 
following equations are obtained for $o and 

$o(x,, z )  = Co,(xl) ecaoz + Co,(x,) e-,oZ, 

L& $1 = (L,  + L, z )  e-aoz + (L,  + L, z )  e-xoz, 

(2.11) 

in the far field: 

where 

(2.14a) 
(2.146) 

4 0  = ($0, $;, $o", $;IT and 

The prime refers to a derivative with respect to z.  yml and ymz are 2-vectors.? In this 
study, the boundary conditions (2.14) for the flow disturbance functions are 
implemented at large values of z ,  denoted by z,, ranging from 6 to 8 displacement 
thicknesses. 

2.2. Dynamics of a compliant layer 
In this section, the equations governing wall disturbances in a single-layer compliant 
wall at O(eo) and O(e') are derived and solved. The layer is assumed to be 
homogeneous, isotropic and uniformly thick. The non-dimensionalization of the wall 
quantities follows that for the flow domain except for the lengthscale, where a fixed 
wall lengthscale denoted by LZ), instead of the local lengthscale is used (see Yeo 
1988). 

The dynamics of a small-amplitude sinusoidal displacement wave field h(x, z ,  t )  = 
q(x, z )  e-i"t in the compliant layer (in the absence of mean-state interaction and body 
forces) is governed by the following viscoelastic analogue of Navier's equations : 

-pwzq = ;r,vzqr+5(2Y,+ r , )VV.q ,  (2.15) 

where q = ( T ~ ,  T ~ ) ~  is the spatial part of the displacement field associated with the 
disturbance, defined with reference to a suitable Lagrangian reference state. The 
reference state may be taken to be the state of the wall that is in static equilibrium with 
the basic flow. V is the gradient operator, and 5 and Y, are the deviatoric and 
dilatational complex moduli respectively (see Bland 1960). As in Yeo (1988), we 
assume the behaviour of the materials to obey a Voigt-type damping model in shear 
and to be elastic in isotropic deformation. The complex moduli Y, and 5 are related 
to the more familiar bulk modulus K (real in this case) and shear modulus G by 

= 2G = 2@C,2 - iwd) and Y, = 3K, (2.1 6 a, b) 
f The details for the 2-vectors yml and y F Z  and the functions H ,  and L, (i = 1, ... ,4) may be 

41 = ($1, q5;, q5;> $ ; I T .  

and 

obtained from the authors or the JFM editorial office. 



206 K. S.  Yeo, B. C. Khoo and W. K. Chong 

where C, is the material’s elastic shear wave speed, and d the damping coeficient. The 
disturbance stresses in the wall are given by the linear isotropic stress-strain law 

u,, = ( A  + 2G) exx + hezt, uZz = ( A  + 2G) e,, + he,,, uzz = 2Ge,,r, (2.17 a-c) 

where h = K-$G, and eXz,erz, and ezx are the linear strains. Navier’s equation (2.15) 
and the stress-strain relation (2.17) can be reformulated into the following useful first- 
order form: 

2,S= BS (2.1 8) 

involving the displacement-stress vector S = (vx, yz, rzx, uzz)T used by Yeo (1988), 
where 

I 0 -ax ~ - 1  0 

0 -pw2 -ax 0 

- h(h + 2G)-l ax 0 0 ( A  + 2G)-’ 
0 - h(h + 2G)-’ a, B =  [ 

-POI’ + 4G(h + G) ( A  + 2G)-’ 3; 0 

2.2.1. Multiple-scale analysis of wall dynamics 

and vz, and the stress components rZx and uzz as series in 6 as follows: 
In applying the multiple-scale analysis, we expand the displacement components qx 

92 = v x o ( x g 9  (2.19a) 
7, = ~,~(~O,x~,~)+E~,1(xo,x~,~)+... 9 (2.19b) 

( 2 . 1 9 ~ )  
(2.19d) 

Z )  + eTxi(xn> xlr Z )  + . ‘. 7 

~ z x  = rzxo(xo, xi, Z )  + €u.zxj(xo, x1,z) + . . ., 
gzz = g z z O ( ~ O ,  xi, Z)  + cu,z1(xn, xi, Z )  + . . * > 

and write the displacement-stress vector S as 

(2.20) 

where Sj = (vZj, yzj, vZxj, uzzj)T. For consistency with the solutions of the flow domain, 
we expect the S, ( j  = 0,1, . . .) to possess factorized spatial wave solutions of the form 

S(x, z )  = Sn(xo, x,, z) + eS,(x,, x,, z )  + . . . , 

(2.21) 

where $(xl,z) = (tjz,,  f z j ,  eZxj, ezZJT. The substitution of (2.20) and (2.21) into 
equation (2.18) and expanding a, as a, + dX, result in two equations for the amplitude 
functions so and g,: 
O ( 8 )  : ’4: LPS, = [a,- C,] A,W so = 0, (2.22a) 
O(2)  : A: L?~S, = c, A: so + c, a , p :  SO), (2.22b) 

where Co, C, and C,, listed in the Appendix, are matrix functions of material 
properties. For a homogeneous layer, these are constant matrices. 

2.2.2. Solution of the wall perturbation equations 
Equations (2.22 a, b) are systems of first-order linear ordinary differential equations 

for go and S1 respectively regarded as a function of z. Equation (2.22b) is non- 
homogeneous with right-hand side determined by the solution for go. We are interested 
in the solutions of (2.22a, b) which relate the values of S, and S, at two points, say z, 
and zb, within the compliant layer. The compliant layer has its top and bottom surfaces 
at z = zn and at z = z1 respectively. The solution to ( 2 . 2 2 ~ )  for 3, is 

(2.23) 

where P(z,, za) is the exponential matrix exp[(zb - za )  C,]. The two-argument matrix 
sl)(zb) = p(zb, Za) (‘1 d za? z b  d zo) ,  
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i+ viscous flow 

n 

2,=0 

FIGURE 2.  Flow-wall interface. x = (x, z,,); x(‘) = (x, z,, + hz) ,  coordinate of interface; x ( ~ )  = (xL, zo), 

function P ( z b r z , )  is termed the propagation matrix. The solution of (2.22 b)  for s, is 
given by 

material coordinate of 

A? g l ( Z b )  = P ( Z , ?  2,) 4 S,(Z,)  + s.” P ( Z b 9  6 )  [C, 4 go(O + c, a,$& go(6))l d5 (2.24) 

4 j  $ l ( Z b )  = W b ,  Za> A? $1(Za) + 1; P(z,, 0 [C, Gl(0 + c, P(5,za) 4 ~ o ( Z a ) l  d5 

G l ( 0  = la PK 8) F,(W P(8, Z a )  A: 9 o ( Z a >  d8. 

for z ,  and zb in the layer; see Coddington & Levinson (1955) or Gilbert & Backus 
(1966). The solution (2.24) may be further developed by noting that the term 
a, (A: go(<)) under the integral satisfies an equation similar to (2.22 b). Its solution 
aliows us to rewrite (2.24) as 

+ 1: P ( Z b ,  0 c, P(6,za> a&: $o(Z,)> d6, (2.25) 

where 

Matrix F, is given in the Appendix. Compared with (2.24), (2.25) only involves the 
value of i3,&4fs0) at a fixed point z,. The solution (2.23) and (2.25) for so and Sl 
are combined with the flow-wall interface boundary conditions in the next section 
to produce the necessary boundary conditions for the disturbance flow functions #o 
and 4,. 

2.3. The coupling ofjluid and wall perturbations 
Having established the essential dynamics of the flow and the wall, it remains to 
consider their coupling at the interface, which has a mean and ‘undisturbed’ position 
along z = zo. This is carried out below in $2.3.1, where the interface boundary 
conditions applicable to the interactions at O(eo) and O(e’) are derived. In $2.3.2, the 
interface boundary conditions are combined with the wall solutions of $2.2.2 to 
produce the necessary wall boundary conditions for the flow functions #, and 9,. The 
wall reference lengthscale Lg) is employed throughout this section unless otherwise 
indicated. 

2.3.1. The interface boundary conditions 
Figure 2 shows a schematic view of the flow-wall interface with greatly exaggerated 

wave amplitude. The total velocity of the flow field is UT) = ( U f u ,  Wf w), where 
(u, w )  = (az, -a,) y? eciWt denotes the perturbation component. dL) = (xL, zo) denotes 
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the mean (undisturbed) position of the interface points with respect to an appropriate 
Lagrangian reference frame. The interface points are moved by the perturbation 
displacement field h = (hz, h,) = (yz, 7,) e-i"t to x ( ~ )  = + h = ( x, zo + h,). The coup- 
ling of flow and wall motions is provided by the kinematic and the dynamical interface 
boundary conditions : 

(i) the continuity of velocity at the interface 

k l p  = VT' IJi) ,  (2.26) 

(iii) and the continuity of surface traction at the interface 

f l j k  ( T )  (,(G " k  = c p l x ( i ,  *Lk, (2.27) 

where the subscript indices j ,  k range over the coordinate indices x and z.  n = (+zz, a,) 
is the instantaneous normal to the surface at xi. Superscript ( T )  denotes the total of the 
basic (or mean) and the perturbation quantities. The total Cartesian flow stresses are 
given by 

(2.28) 

where R, = U ~ ) L f ) p ~ ) / p ~ )  is the Reynolds number based on wall lengthscale and p ( T )  
is the total pressure field which can be calculated from the Navier-Stokes equations. 

The flow-wall coupling conditions (2.26) and (2.27) are approximated at the mean 
position of the interface through Taylor expansion about x = (x, zo). The Taylor 
expansion of (2.26) about X, keeping only terms up to first order in disturbance 

(2.29a, b) 
quantities, yields 

where all the terms are evaluated at mean interface point X. Similar Taylor expansion 
of the dynamical interface condition (2.27), noting that the total stresses are sums of 
mean (overbar) and perturbation stresses, yields 

- iwy, = a, 1c. + y,(a, U ) ,  - iwy, = -a, 1c., 

where all the terms are evaluated at X. Taking into account that in the mean 
(undisturbed) state gZz = 6, and @,: = 6, at the mean interface x and that a,(u = 
a, to within the linearization approximation, equation (2.30) simplifies to 

(2.3 1 a, b) 

A term equal to (tfZ, - @if,,) a, y2 has been omitted from the right-hand side of (2.3 1 a). 
@,, need not be equal to when there is non-zero pressure loading on the wall. 
Similar terms also exist for interaction between adjacent solid layers of different 
materials. To take these terms into account, mean pressure loading on the surface has 
to be specified, see Yeo, Khoo & Chong (1992, 1994). In this paper we neglected the 
effect of mean-pressure loading so that these terms are zero. 

We can now apply multiple-scale analysis to the interface boundary conditions (2.29) 
and (2.3 1 )  by expanding fl jk  = fl jko + ef l jkl ,  y, = yx0 + eyxl, y, = yzo + qZ1, and a, = 
i3zo+~i3,1 as in the preceding section. The perturbation flow stresses 4% and C& are 
expanded in terms of flow eigenfunctions $o and via (2.28). The analysis yields the 
following equations, in matrix form, which couple the O(eo) and O ( 2 )  displacement- 
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stress vectors go and g1 of the wall at z, (mean interface) to the flow eigenfunctions, 
$, and $1, and their derivatives at the same point: 

O(E0) : 4 So(z0) = Q,(z,> 4 dO(ZO), ( 2 . 3 2 ~ )  

O(E1) : 4 &o) = Q,(zo) 4 41GJ +Dl 44, (zo)  + D2 % p i  4o(zo>)3 (2.32b) 

where the matrices Q , , D l  and D, are given in the Appendix. The O(EO) equation 
( 2 . 3 2 ~ )  is equivalent to the matrix interface boundary condition that has been used in 
Yeo (1986, 1988) in his study of the locally parallel flow case. 

2.3.2. Wall boundary conditions for  $o and $1 

may now be obtained 
by combining the interface boundary conditions (2.32) above with the solutions for the 
wall (2.23) and (2.25). Before doing that, we note that the term i3JArgo) in (2.25) (with 
z ,  now rep!aced by z,) may be obtained in terms of $, and $1 at zo through the 
differentiation of ( 2 . 3 2 ~ )  : 

a,pr go,<zo>> = Q, 4 a,., 4o(zo) + Q, 4 0  a,., ‘4; +El 4 4o(zo) (2.33) 
(matrix El is given in the Appendix). We can now combine the interface conditions and 
the wall solutions by substituting (2.32) and (2.33) into (2.23) and (2.25) with z, set to 
zo (the position of the mean flow-wall interface) and zb = z1 (the bottom of the 
compliant layer). The resultant equations are 

O(E0) : (2.34 a )  
O(E1) : (2.34 b)  

where 

The wall boundary conditions for the flow functions 4, and 

$ J ( Z l >  = P(Z1,  ZO) Q, 4 4 0 k o h  
A? @I) = F Z l ,  ZO) Q, 41(zo) - Y W l 4  - Yw2 a,., 4, 

21 

LO 

Yw2 = - P ( Z 1 ,  z,) D, 4,(z,) - J P(Z1, 5) c, P(t ,  zo) QdO(Z0) d5, 

GA5) = P(t> zo) [Q, a,., 4o(zo) + €1 4 , ( Z J l  + 1 P(t, 9) F,(wY$, zo) Q, 4o(zo) d9. 

( 2 . 3 4 4  

and 
5 

ZO 

Equations (2.34a, b )  now relate the flow eigenfunctions 4, and q41 at the mean 
flow-wall interface at z = z ,  to the wall’s displacement-stress vectors go and g1 at the 
bottom of the compliant layer at z = zl. At this bottom interface, the displacement 
components qzo(zl), qzo(zl), qzl(zl) and vzl(zl) in 3, and g1 are zero because we have 
assumed perfect bonding between the compliant layer and the rigid base. With these, 
the required wall boundary conditions for 4, and 41 at z = z, are hence given by the 
first two rows of matrix equations ( 2 . 3 4 ~ )  and (2.34b), namely, 

O(E0) : 2M, ’4; 40Go) = 02, ( 2 . 3 5 ~ )  
O(E1) : ,Mw 4 41(Z,> = 2Yw = 2Yw1 4- + *YW2 a,, 4 (2.353) 
where Mu = P(z1, zo) Q, M,. 
0, is the null 2-vector. The left superscript 2 is used here to denote the first two rows 
of the matrix or vector. The diagonal matrix M, = Diag {r,  1, r-l ,  rP2} (r = R,/R,) is 
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added at this point to convert $, and 4, (which has hitherto been interpreted in term 
of the wall lengthscale LZ) in this section) to the flow lengthscale S:d), so that the wall 
boundary conditions (2.35) are compatible with the flow disturbance equations (2.9). 

2.4. The stability eigenvalue problem and correction for  boundary-layer growth 
We have obtained by now all the equations that we need to specify our stability 
problem at O(E") ((2.9a), ( 2 . 1 4 ~ )  and ( 2 . 3 5 ~ ) )  and at O ( d )  ((2.9b), (2.14b) and (2.35b)). 
We collect these together below for the convenience of subsequent reference. 

O ( 8 )  : Lf$,(z) = 0 (z, < z < z,), ( 2 . 3 6 ~ )  
subject to 2 M , 4 4 ( Z O )  = 0 2 %  M,(P,(z,) = 0, (2.366, c)  
where the amplitude function A<(x,), which does not affect the solution of #,, has been 
discarded. 
O(e1) : ( 2 . 3 7 ~ )  
subject to (2.3 7 b)  

(2.37 c) 
The amplitude function A{(x,)  does not affect the solution we seek and has also been 
removed from (2.37). 

The system of equations (2.36) for the O(6") problem represents the stability 
eigenvalue problem for the boundary layer treated as a locally parallel flow (Ye0 1988), 
as only the x-component of the basic flow U and its derivative with respect to z are 
involved in its formulation. For specified Reynolds number R, and frequency w (taken 
to be real in this study), non-trivial solutions $o exist only for certain values of the 
streamwise wavenumber a,. In the locally parallel context, there is instability when 
Im (a,) < 0. corresponding to a downstream growing wave. 

The differential and boundary operators of the O(el) problem (2.37) are identical to 
those for (2.36). System (2.37) differs from (2.36) because of the presence of non- 
homogeneous terms on its right-hand side representing the influence of flow-non- 
parallelism. The O(d) problem has a solution 4, provided the solvability condition 

Lf$,(z)  = 4 A{ + 4 a,. A{ (z, < z < z,), 
2Mw 9,(zo> = 2Yw = 2Y,1 4 + 2 Y w 2  a,., 4 
M, 41(z,) = Y, = Y m 1 4  + Ycoa ", 4. 

(2.38) 

holds for every solution of q(z) of the adjoint homogeneous problem to system (2.37); 
9 E (qj, qi, rp", P"')~. Superscript asterisk denotes complex conjugation and the centre- 
dot product is the complex inner product. U;, is the 4 x 8  matrix termed the 
complementary adjoint boundary matrix.? We note that the homogeneous adjoint 
problem of (2.37) is identical to the homogeneous adjoint of (2.36) and they have the 
same eigenvalues a, as the original eigenvalue problem (2.36). The more complex form 
of the solvability condition (2.38), compared to that used by Gaster (1974) and others, 
arises from the presence of derivative boundary conditions at both z = 0 and z ,  (set 
to 6 or 8). The matrix Uic has the two-point separated form 

so that expanding (2.38) yields 
dAi 
-- - ia,(x,)A{, (2.39) 

t The details concerning the derivation of the solvability condition and the associated 
complementary adjoint boundary matrix may be obtained from the authors or the JFM editorial 
office. 

dx1 
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where 

The solution of the locally parallel eigenvalue problem (2.36) and the evaluation of 
(2.39), which gives the x,-variation of A;, together fully specifies the O(eo) disturbance 
stream function t++o given in (2.7) up to an arbitrary constant. By differentiating with 
respect to x and using (2.39), we have 

$01z=O = $ o I ~ = o ,  (2.40a) 
where apXz; RJ = [iao + 4ia,+ 4;' a%., $Jl,=,. (2.40b) 
Equation (2.40) describes the streamwise rate of change of the O(eo) disturbance stream 
function l / /o with respect to the local Cartesian frame (x, z) at the streamwise location 
of Reynolds number R,. The influence of boundary-layer non-parallelism is contained 
in the term c(ial+$;1i3z,$o) which is asymptotically small at large R8 since 
e = mR,'. 

The downstream spatial growth rate of the locally parallel flow theory is -1m (ao) 
for first-degree disturbance quantities and - 2 Im (ao) for quadratic disturbance 
quantities. Non-parallel corrections to O(e') may be determined from the solution of 
(2.36) and the evaluation of (2.39). The O(e') corrections are generally different for 
different physical quantities. The spatial growth rates of the following physical 
quantities have been considered in the literature: 

(a) the kinetic energy integral 

E(x) = ( u 2 + w 2 )  dz, (2.41) 

(2.42) 
(b) the 1uI2 integral 1:- - 

Z(x) = j: (2) dz, 

(c)  the horizontal and vertical root-mean-square perturbation velocities 
JuJ = ( u 2 ) ' / 2 ,  IwJ = (w2)1/2,  (2.43a, b) 

where u = Re (a2$o e-i"t) and w = -Re e-iwt) are the horizontal and vertical 
components of the perturbation _ _  velocity respectively. _ _  The overbar here denotes time 
averaging. The quantities u2, w2 and u 2 + w 2  can be measured using hot-wire 
anemometry. Employing (2.39), it is not difficult to show that the downstream 
amplification rates for E(x), I(x), Iu( and IwI to O(e') are given by 

- -2 Im (aO+ea1)+e & ( E )  = _ _  - 

a(') = -- = -2 Im (a,+ea,)+e 

1 d E  
E d x  

1 d l  
I d x  

(2.44) 

(2.45) 

where 

(2.46) 
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The growth rate factors aE, 01' and alui were introduced by Gaster (1974), whilst aIwi was 
used by Bridges & Morris (1987). The growth rate factors aiul and alWl have a 
dependence on z through their last term. Appropriate values of z are frequently chosen 
based on distinguished features of the eigenfunction. Thus Gaster evaluated dul at 
values of z corresponding to the local maxima of JuJ. There are normally two such 
maxima : one near the wall and one near the outer edge of the boundary layer, termed 
the inner and outer maximum respectively. Bridges & Morris defined a neutral curve 
criterion based on the evaluation of alWl at a point near z = 2. 

2.5. Extension to multi-layer walls 
The formulation for single-layer compliant walls developed in the preceding sections 
may be extended to multi-layer cases by replacing all the occurrences of the two- 
argument propagating matrix P(zb, za) with the more general multi-layer propagation 
matrix defined below. Figure 1 shows an n-layer compliant wall which has itsjth layer 
(1 < j  < n)  located between z = zj-l (top surface) and z = zj (bottom surface). For z ,  
in the rth layer and zb in the sth layer (1 < Y < s < n), the propagation matrix (which 
relates the displacement-stress vector at the two points, Yeo 1988) is given by 

. P(r+l)(zr+l, zr)  P(')(zr, za). (2.48) 

P'j)(5,8) = exp [([-a) Cf)] is the propagation matrix of thejth layer, where Cij) is the 
C, matrix in the Appendix evaluated based on the material properties of thejth layer. 
Perfect bonding between adjacent layers has been assumed in deriving (2.48). In 
forming the boundary-condition matrices for the O(eo) and O($) problems, the z1 for 
the single-layer case (see (2.34)) should be replaced with z ~ ,  which is the bonded 
interface of the last (nth) layer with the rigid base. 

2.6. Aspects of numerical computation 
The O(eo) locally parallel flow eigenvalue problem (2.36) is solved by a spectral 
collocation procedure in which the eigenfunction $,, is expanded in terms of Chebyshev 
polynomials in z.  The components of the basic flow are similarly represented. The 
homogeneous adjoint problem to (2.36) is solved using the same spectral collocation 
procedure, except that no iteration is required to find the adjoint eigenfunction p, 
because the eigenvalues of the adjoint problem are identical to those of (2.36). 
$,(xl,z) is normalized such that 4: = 1.0 at z = zo for the case of rigid wall. For 
compliant walls, the same normalization is also adopted. All derivatives of $,(x1, z) 
with respect to x1 are performed using second-order-accurate central difference 
scheme, with regular verification of accuracy. The functions C,,(xl) and Co,(x,) (see 
(2.11)) are determined from the solution of #o(xl, z )  at z ,  and their derivatives with 
respect to x1 are also computed using second-order central differencing. All integrals 
with respect to z are calculated using the fourth-order-accurate Simpson's rule. 

3. Results and discussions 
3.1. Rigid- wall case 

Before proceeding to consider the more complex case of compliant walls, we first 
compare our non-parallel flow calculations against some of the rigid-wall results 
available in the literature. The non-parallel neutral stability curves based on the 
streamwise growth of the kinetic-energy integral E, the inner maximum of Jul and ( w I  
at z = 2.0 were compared to the corresponding results of Gaster (1974), Bridges & 
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FIGURE 3. Neutral stability results for a rigid wall based on dE) = 0: ~ , present non-parallel 
results; 0, Gaster (1974); 0, Fasel & Konzelmann (1990); ----, -1m (a,) = 0 (parallel flow). 

Morris (1 987) and Fasel & Konzelmann (1 990), all pertaining to the Blasius boundary 
layer. The agreement was very good in all cases. The results for the kinetic-energy 
integral E in particular is shown in figure 3, where the frequency of the perturbation 
is plotted along the ordinate as the parameter F = [dd) dd)(Uf) ) - ' ]  x lo6. The very 
good agreement with the data points of Fasel & Konzelmann is especially significant 
because the latter's results were obtained from the direct integration of the 
Navier-Stokes equations, a distinctly different treatment from the eigenvalue- 
correction approach used by Gaster and the present work. 

3.2. Compliant walls 
Having thus established the consistency of our non-parallel flow calculations with 
available results in the literature on rigid walls, we now consider the case of compliant 
walls. The dynamical response of a compliant layer to a perturbation is dependent 
upon its material properties: the material density p, the elastic shear-wave speed C,, the 
material damping coefficient d and the bulk modulus K (see 52.2). It is also dependent 
upon the thickness h of the layer. These are non-dimensionalized with respect to the 
free-stream speed U g ) ,  the fluid density py )  and a reference wall lengthscale LE). The 
reference lengthscale LE) is specified implicitly via the wall reference Reynolds number 
R, (defined after (2.28)), which is assigned a value of 2 x lo4 throughout. The 
compliant walls considered below have material density p = 1 .O, which corresponds 
roughly to the use of rubber-type materials in water. 

The non-parallel growth factors aE and al'l are used in this paper to evaluate the 
importance and the effects of boundary-layer non-parallelism over compliant walls. 
These choices are to some extent arbitrary. Proper choices should be guided by the 
availability of specific data for comparison. However, detailed experimental data are 
not yet available. Also, our results are not directly (quantitatively) comparable to the 
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FIGURE 4. Neutral stability curves for single-layer walls with damping coefficient d = 0.0049, bulk 
modulus K = 500 and of different shear wave seed C, and thickness h. (a) C, = 2.0, h = 1.0; (b)  
C, = 0.7, h = 5.0. -, a(B) = 0 ;  ----, dUl = 0 ;  ---, -1m (ao) = 0 (parallel flow). 

theoretical results of Carpenter & Sen (1990) owing to differences in the wall model. 
The growth factor aE is chosen because the kinetic-energy integral E provides 
intuitively the best measure of the size of a disturbance at a streamwise station. 
However, E is a fairly cumbersome quantity to measure in practice. Because of the 
more widespread use of IuI in experiments, it was decided also to include the growth 
factor 01~~1, with 1u1 being evaluated at the well-defined inner maximum. 

We first examine the effects of boundary-layer non-parallelism on the compliant-wall 
TSI. Figure 4 shows the TSI regimes for two single-layer compliant walls based on the 
three measures of spatial growth: -1m (go) ,  aE and The softer wall, with a 
material C, = 0.7 and h = 5.0, has a real shear modulus Re (G) = pC,Z which is about 
one-eighth times that of the stiffer wall. We shall look at the two non-parallel criteria 
in turn. For the energy growth criterion, non-parallelism may be seen to be 
destabilizing along the upper branch and near the nose of the TSI regime for both of 
the walls. A reduction of critical Reynolds number Reg is indicated for both walls. 
These trends are similar to those observable in figure 3 for the rigid wall. For the IuI 
criterion, flow non-parallelism is also destabilizing along the upper branch of the TSI 
regimes. However, no significant change of Reg is observed for the stiffer wall (which 
is in agreement with rigid-wall results not shown here), but a small increase in Re? is 
seen for the much softer wall. The Iu( criterion also indicates a mild degree of 
stabilization along the lower branch of the regime. Overall, we note that the effects of 
flow non-parallelism on compliant-wall TSI are fairly mild. 

To consider the effects of flow non-parallelism on the travelling-wave flutter (TWF) 
mode of instability, we need to move on to even softer walls. TWF starts to become 
important once the material shear wave speed C, falls below the free-stream speed. 
Material damping can play an important role in suppressing and controlling the 
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FIGURE 5. Neutral stability curves for a single-layer wall with h = 1.0, K = 500, C, = 0.7 and d = 
0.0049. (a) TSI, (b) B, TWF, (c)  B, TWF. -, dE)  = 0; -----, alvl = 0;  ---, -1m (a,) = 0 
(parallel flow). 

severity of the TWF. Figure 5 shows the TWF and TSI regimes for a single-layer 
compliant wall with C, = 0.7 and layer thickness h = 1.0. The material damping has 
been kept at a low level to prevent the suppression of the TWF. The TWF instabilities 
exist in two disconnected parts, which are labelled B, and B, as in Yeo (1988). The 
unstable side of the neutral curves is marked by partial hatching. The B, regime is 
generically the same as the TWF regime on plate surfaces studied by Carpenter & 
Garrad (1985). The B, regime, which emerges at low R,, however, appears to have no 
equivalent on plate surfaces. 

It can be seen in figure 5 that the effects of non-parallelism on TSI remain mild as 
before. Flow no-parallelism appears to have overall a destabilizing effect on the B, 
TWF according to the energy criterion. This destabilizing effect has been found to be 
generally mild, although somewhat stronger than for TSI at corresponding R,. In fact, 
non-parallelism may be seen to be slightly stabilizing along a short portion of the lower 
branch of the B, neutral curve. The effect of non-parallelism on the B, regime is, 
however, less regular for the 1uI criterion. Destabilization occurs along the upper 
branch, but significant stabilization may be seen along the lower branch. An analysis 
of the flow eigenfunctions along the B, neutral curve reveals that the fairly rapid z-shift 
of the inner maximum of IuI is a significant factor contributing to the sensitivity of the 
(u1 criterion. The strongest effect of flow non-parallelism is, however, reserved for the 
low-R, B, TWF regime. The effect is one of destabilization, and it produces a 
significant enlargement of the instability domain. It is pertinent to note that the two 
non-parallel criteria, energy and Iu(, are in reasonably good agreement in their 
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FIGURE 6. Neutral stability curves for a thick-layer wall with h = 5.0, K = 500, C, = 0.7 and d = 
0.0294. (a) TSI, (b)  B, TWF. -, dE) = 0 ;  -----, ~4 ' '  = 0 ;  ~ - -  , -I m (ao) = 0 (parallel flow). 

prediction of the unstable domain, quite contrary to the preceding case for B, regime. 
The strong effect of flow non-parallelism on the B, modes is consistent with its low-R, 
origin. 

Next we examine a compliant layer, figure 6, which is five times as thick as the 
preceding wall of figure 5 ,  and possesses a much higher coefficient of material damping, 
d = 0.0294. The wall has been found to have significant potential for delaying 
transition according to the locally parallel flow calculations of Yeo (1988). The high 
level of damping effectively suppressed the B, TWF regime to a high Reynolds number 
R, beyond 4000 (and thus not reflected in the figure). The B, regime, owing to its low 
frequency, is not strongly inhibited by the high damping and remains clearly visible in 
figure 6. The amplification rates of the B, regime are, however, very low according to 
parallel-flow calculations and do not produce significant disturbance growth. A two- 
dimensional en (n = 8.3) calculation carried out by Yeo (1988) on the dominant TSI 
regime yielded a laminar-turbulent transition Reynolds number R, in excess of 5000, 
compared to 2900 for a rigid wall. The parallel and non-parallel flow neutral stability 
curves for the thick-layer wall are compared in figure 6. In spite of the greatly extended 
frequency range of the unstable TSI modes, which goes up as high as F = 750, the 
influence of flow non-parallelism appears to be rather small and similar to those of the 
preceding cases. The diminishing influence of non-parallelism with increasing R, is also 
clearly evident in the figure, which shows the TSI regime to a fairly large R, of 4000. 
As R, becomes large, the non-parallel neutral curves aE = 0 and alui = 0 converge to 
the parallel-flow neutral curve. Since the destabilization of TSI is fairly mild 
throughout the entire range of R,, laminar-turbulent transition via TSI modes is not 
expected to be significantly affected by boundary-layer non-parallelism. The rapidly 
diminishing importance of non-parallelism at high R, is also applicable to the B, TWF 
regime which is present beyond R, of 4000 (not shown). A very strong destabilizing 
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FIGURE 7. Neutral stability curves for a two-layer wall. Layer 1: h = 0.1, C, = 33.01, d = 0, K = 
2360.7. Layer 2: h = 4.5, C, = 0.7, d = 0.0049, K = 500. (a) TSI, (b) B, TWF. -, dE) = 0. 3 ,  - - - -  
,lul = 0. ____ , -1m (a,,) = 0 (parallel flow). 

influence is, however, again observed for the low-R, B, TWF regime. The two non- 
parallel flow neutral criteria aE = 0 and alul = 0 are in approximate agreement as to the 
extent of the B, instability regime. The destabilization occurs primarily along the upper 
neutral branch and pushes the unstable B, regime to beyond the R, of 1100 from the 
value of 700 according to parallel-flow calculations. The non-parallel and parallel 
neutral curves are nearly coincident along the lower branch. The very considerable 
enlargement of the unstable B, TWF is in fact associated with a large increase in the 
disturbance growth rates due to non-parallel flow effects. Some details of B, growth 
rates will be given for the compliant wall examined in the next section. 

3.3. A two-layer compliant wall 
The next wall to be examined is a two-layer compliant wall comprising a thin layer of 
a stiff material (large elastic shear modulus) bonded onto a much thicker layer of a soft 
material. Such a two-layer wall configuration was employed by Gaster (1987) (see also 
Willis 1985) in his experiment, and found to possess the ability to reduce the growth 
rates of TSI waves when tailored with suitable properties. Neutral stability curves for 
the wall based on parallel-flow calculations and the two non-parallel flow criteria are 
illustrated in figure 7. It is noted that the effects of flow non-parallelism on the TSI 
regime are again fairly mild and similar to that for single-layer compliant walls. The 
B, regime has in this case been suppressed to a high Reynolds number by the relatively 
high stiffness of the top layer. The B, TWF regime is again strongly destabilized by 
non-parallel effects, as in the preceding cases. Besides a significant broadening of the 
frequency band of the regime, non-parallel effects cause the unstable B, regime to 
extend to R, of nearly 2000; both non-parallel criteria are in good general agreement. 

The enlargement of the B, regime has already been mentioned to be associated with 
the large disturbance growth rates produced by non-parallel effects. Figure 8(a) shows 



218 K. S.  Yeo, B. C. Khoo and W. K. Chong 

0.015 

0.012 

Y 0.009 
2 
2 s 

0.006 
bD 

cd 

cd 

M 

.- * 
3 0.003 

0 

-0.003 

0.012 

0.008 
0 
U 

2 

5 
2 

& 
2 0.004 .- 
Y 

2 
v1 

0 

0 25 50 75 100 

Frequency, F 

0 50 100 150 200 250 

Frequency, F 

FIGURE 8. Spatial amplification rates of (a) B, TWF regime and (b) TSI regime for the compliant wall 
of figure 7. (i) R, = 800, (ii) R, = 1500. -, -- - - -  2 ,  ---, -1m (ao) (parallel flow). 

the spatial growth rates - Im (a"), $aE and alul for the unstable B, modes at R, = 800 
and 1500 as a function of frequency F. At R, = 1500, there are no unstable B, modes 
according to parallel-flow theory. At R, = 800, it can be seen that the non-parallel 
growth rates are so much higher than the growth rates predicted by parallel-flow 
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FIGURE 9. Integrated streamwise amplification of fixed-frequency waves by the B, TWF regime in 
figure 7: (a) F =  35, (b)  F =  50. -, ln(Eli2/qFdi2); -----, ln(lul/luol); ---, ln(IAI/IAol> (parallel 
flow). 

theory. The growth rates based on the two non-parallel criteria are in approximate 
agreement both in terms of magnitude and frequency range. The corresponding growth 
rates for the TSI regimes at the same set of Reynolds numbers are given in figure 8(b). 
These curves confirm what we have qualitatively noted above that non-parallel effects 
are only mildly destabilizing to the TSI. Comparing the growth rates of the two 
instabilities given in figures 8 (a) and 8 (b), it is observed that the non-parallel B, TWF 
modes at R, = 800 actually develop higher maximum growth rates than corresponding 
TSI regimes. This is in sharp contrast with the parallel-flow calculations which show 
a TSI regime dominating a B, TWF regime of very small growth rates. This result 
highlights the overwhelming importance of non-parallel flow effects for the B, regimes. 
For highly compliant walls especially, the adverse influence of non-parallelism may 
reach out to fairly large R, (such as in figure 7), where its effects on TSI has appeared 
to be negligible. Thus the nature of the instability can make an important difference to 
the effects of boundary-layer non-parallelism. 

To further evaluate the importance of boundary-layer non-parallelism and assess the 
possible role that an enhanced B, TWF regime may play in triggering early transition 
of the flow to a turbulent state, the integrated streamwise growths of fixed-frequency 
unstable B, modes are also examined. Figure 9 shows the cumulative streamwise 
amplification of the B, modes for the two-layer wall at the frequencies of F = 35 and 
50. Integration was commenced at R, = 300. From figure 9, we can see that the 
streamwise cumulative growth of some unstable B, modes far exceeds the prediction of 
parallel-flow theory with amplitude ratio reaching beyond e6, where en with 8 < n < 
11 have frequently been used to correlate with the onset of transition. This suggests 
that the B, TWF may be a cause for early transition. This is particularly important in 
situations where the level of turbulence in the oncoming stream is significant or the 
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magnitude of disturbances in the leading-edge region of the boundary layer is high. The 
possible presence of strong B, modes also suggests that inviscid hydroelastic-type 
theory (see Carpenter & Garrad 1988) may overestimate the true onset (critical) flow 
speed for strong TWF instability. The hydroelastic theory approximates the behaviour 
of B, TWF at large R, reasonably well. Since the destabilizing influence of non- 
parallelism on the TSI of the two-layer wall is generally small, and moreover 
diminishes to negligible levels at higher R,, the cumulative streamwise growth of the 
TSI modes on the wall will only be slightly affected by non-parallel effects. This implies 
that for all practical purposes the transition of the flow, if it occurs via TSI modes, will 
be but little affected by non-parallel effects. 

The above two-layer compliant wall with its top layer of stiff material bears a 
significant degree of similarity with the bending plate on elastic foundation model 
studied by Carpenter and coworkers. Carpenter & Sen (1990) noted that the TSI 
regime over their wall, which was an approximate model of Kramer's (1960) best 
coating (but without the damping fluid), was only mildly destabilized by non- 
parallelism. This result is in qualitative agreement with ours for both single- and two- 
layer walls. No comparison of results can be made for the TWF modes, however, since 
Carpenter & Sen did not consider them. 

3.4. Suppression of unstuble B, modes and three-dimensional aspects 
The susceptibility of compliant surfaces to low-R, B, TWF (a FISI) instability does not 
imply that they are therefore incapable of delaying laminar-turbulent transition. 
Compliant surfaces come in useful to stabilize the TSI mainly in the range of Reynolds 
number R, from lo3 to say lo4. The concern with low-R, B, instability is actually one 
of preventing it from triggering premature transition. This can be achieved by 
employing a panel of stiffer material up front from the leading-edge region up to an 
appropriate R,, say 700. This will eliminate the most dominant portion of the B, TWF 
instability. This multi-panel approach, which involves using compliant panels of 
different properties, was in fact employed by Carpenter (199 1) for optimizing the 
transition-delaying performance of plate-type surfaces. Alternatively, the low-R, B, 
instability may be resisted by thinning the compliant layer progressively towards the 
leading edge. Reduction in layer thickness increases wall stiffness which resists the B, 
instability. For streamlined bodies, the B, instability may also possibly be inhibited by 
a suitably profiled nose which produces a favourable pressure gradient and highly 
stable flow. Properly applied, these measures to control the low-R, unstable B, modes 
should not unduly affect the stabilizing quality of a compliant wall with respect to the 
TSI where it matters most. 

The detailed analysis of non-parallel flow effects on three-dimensional obliquely 
propagating wave modes is rather involved. However, some intuitive conjectures as to 
their possible influence may be made on the basis of the Stuart-type transformation 
used by Yeo (1986, 1992) in his locally parallel flow study. Under the transformation, 
an oblique wave propagating at an angle 6' to the downstream direction perceives a 
boundary layer with the velocity field ( U  cos 8, W ) .  The horizontal component U cos 8 
diminishes in magnitude relative to the vertical component W as 6' is increased from 
zero. The perceived boundary layer therefore exhibits a growing degree of flow 
divergence with increasing 6. The increase in flow divergence marks an enhancement 
of non-parallel effects on the three-dimensional waves relative to those on two- 
dimensional modes at the same Reynolds number R,. For three-dimensional oblique 
FISI wave modes, the increased destabilizing influence of non-parallelism is opposed 
by an apparent increase in the wall stiffness moduli (rescaling by (cos 6')-,) due to 
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reduction in perceived free-stream speed. The latter is known to have a strong 
stabilizing effect on the FISI (see Yeo 1986, 1992). Taken together, it is expected that 
the non-parallel stability of the flow to three-dimensional FISI modes, which include 
the low-R, B, TWF, will not be significantly worse than its non-parallel stability to 
two-dimensional FISI modes. 

The situation for TSI appears to be somewhat less desirable. This is because the 
increase in apparent wall stiffness adds to rather than subtracts from the destabilizing 
influence of increased non-parallelism experienced by the three-dimensional TSI 
modes. At large angle of propagation 8, the compliant wall subjected to stiffness 
rescaling approaches the rigid-wall behaviour. The perceived mean flow field subjected 
to a corresponding velocity rescaling acquires the Blasius mean flow (U,  W(cos 8)-') at 
the reduced Reynolds number of R, cos 8. This implies that at large 8, the three- 
dimensional compliant-wall TSI mode is subjected to non-parallel effects similar to 
those for rigid-wall two-dimensional TSI at low Reynolds number. This large4 rigid- 
wall behaviour of compliant wall three-dimensional TSI appears to persist even to 
large Reynolds numbers because the reduction in the non-parallel effect due to increase 
in R, (for example W = O(R;')) is ultimately opposed by increased flow divergence at 
sufficiently large 8, up to a limiting 8 < 90" beyond which no TSI exist. A limiting 6 
exists because there is no rigid-wall TSI when the Reynolds number R,cos 8 of the 
equivalent two-dimensional case is sufficiently low. The presence of the rigid-wall- 
related destabilizing non-parallel influence at large 8 and large R, is not expected to 
have unduly serious consequences for overall stability and transition however. This is 
because firstly the destabilizing non-parallel influence for a rigid wall is rather mild and 
lsecondly the more dominant compliant-wall TSI modes at large R, usually occur for 
fairly small 8, at which non-parallel effects should be quite negligible. 

3.5. Further remarks 
Because of the perturbative nature of the present work, some comments on the 
accuracy of the results are in order. The studies that have been done on boundary-layer 
non-parallelism to date have attempted only to correct for the leading-order non- 
parallel effects, O(s'). Intuitively, this leading-order correction appears to be quite 
adequate because s is generally very small in the range of Reynolds numbers that is of 
interest; c < 0.0043 for R, > 400. Issues and problems connected with the im- 
plementation of higher-order corrections have in fact been discussed by Gaster (1974). 
What seems clear is that extension to the next and higher orders is a highly non-trivial 
problem. The recent non-parallel study by Fasel & Konzelmann (1990) based on direct 
Navier-Stokes simulation sheds some important light here. In achieving very good 
agreement with the established O(E') calculations of Gaster (1974), Bridges & Morris 
(1987) and others, they have shown that the O ( d )  corrections are in fact completely 
adequate in capturing the effects of boundary-layer divergence, at least in the R, range 
covered by their calculations, which is down to R, of around 450. This adequacy of the 
O(E') correction is likely to extend to the compliant wall case because the 'degree' of 
non-parallelism is determined solely by the flow, which is common to both cases. The 
uniformly thick compliant layers have no innate non-parallelism, but merely respond 
to and reflect the non-parallelism of the flow. We can therefore expect the non-parallel 
effects at the same Reynolds number to be represented to the same accuracy, with 
possibly some influence from frequency and wavenumber. As one gets to even lower 
R,, the need to take into account higher-order non-parallel effects undoubtedly 
increases. However, if the very good agreement between the O(el)-corrected results and 
direct Navier-Stokes simulations is anything to go by, we can expect the effects of the 

8 F L M  280 



222 K. S. Yeo, B. C. Khoo and W. K. Chong 

next order of correction to be quite small for R, down to about say 350 (the value is only 
an intuitive guess). The results we have obtained for the B, TWF are therefore quite 
reliable. It may be recalled that in some cases the B, regime actually stretched to fairly 
large R, (nearly 2000 for the two-layer wall) where the accuracy of the O(E’) correction 
is not in doubt. Hence the results for the B, regime are with great certainty qualitatively 
correct. Quantitatively, it is believed that the B, results are quite good to R, as low as 
350. 

As one progresses to even lower R,, non-parallel effects will increase more 
dramatically. In the range of very low R,, the study of boundary-layer stability based 
upon the treatment of non-parallelism as a higher-order effect, tacked onto a locally 
parallel theory, may not be the most ideal approach. An alternative is suggested by the 
recent work of Goldstein (1983) on boundary-layer receptivity. The unsteady motion 
in the region of the flat plate stretching from the vicinity of the leading edge to distances 
x ( ~ )  = O(U:)/dd)) (or R, = O(1720 x F-’”)) is governed by the linearized unsteady 
boundary-layer equation (UBL). The UBL equation incorporates the influence of 
boundary divergence on the unsteady motion to its lowest order. Goldstein showed 
that the solutions of the UBL equation (in the region where divergence is strong) are 
smoothly connected to the solutions of the non-parallel 0s equation, which applies 
further downstream. This suggests that the UBL equation in a suitable homogeneous 
form may be useful for the study of instability at very low R,. By incorporating 
divergence to the lowest order, the UBL equation may be expected to capture the non- 
parallel effects more efficiently than an approach based on developing successive 
corrections. In fact, the UBL equation and the non-parallel 0s equation are 
derivatives of a common and more complex equation (2.19) of Goldstein (1983) in the 
appropriate streamwise limits. Much work may be needed to adapt the UBL equation 
for stability study, however. The usual normal-mode analysis does not work because 
the UBL equation has explicit dependence on the stream coordinate. A receptivity 
study based on the UBL equation will also, on the other hand, be extremely useful in 
clarifying how the various compliant-wall instabilities, and in particular the B, TWF 
which exists in this sensitive region, may be excited by external perturbations. 

4. Conclusions 
The two-dimensional non-parallel linear stability of zero-pressure-gradient bound- 

ary layers over compliant walls was studied. Corrections to the spatial amplification 
rate of standard locally parallel-flow theory based on various growth criteria were 
obtained for leading-order non-parallel effects. The results indicate that the influence 
of boundary-layer non-parallelism is in general one of destabilization. 

For the Tollmien-Schlichting instability (TSI), the destabilizing influence of non- 
parallelism has been found to be fairly mild. The destabilization of B, travelling-wave 
flutter (TWF) is also generally mild, although a little stronger than for the TSI. The 
destabilizing effect on the low-Reynolds-number B, TWF regime has, however, been 
found to be strong, so that a locally parallel theory may grossly underestimate the 
spatial growth of the instability. In general the destabilizing effect of non-parallelism 
was found to diminish with increasing Reynolds number. 

The financial support of the National University of Singapore for Mr W. K. Chong 
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Appendix 

listed below. 
Some functions and matrices in equations (2.9), (2.22), (2.25), (2.32) and (2.33) are 

F, = (B, + B, a:) (a,, 4,) + (azl 01,) (B, + B, a:) 4, + (B, + B, a, + B, a: + B, a:) $,, 
4 = (4 + B, a,"> 40, 

where 
B, = 3ia, U, + ia;'(a," U,) - 2iw + 401: R;', 

B, = 0, 
B, = 0, 

B, = - ia;' U, - 4Rh1, 

B, = ia;l(a;+a:) W,, 
B, = -ia;' W,. 

B = -2a-I R-' B, = 3iU, + ia;' w + 6a, R;', 4 0 6 ,  

0 -iao G-' 0 

0 - pw2 - ia, 0 

- ia, h(h + 2G)-' 0 0 ( A  + 2G)-' 
0 - ia, h(h + 2G)-I 

0 - 1 0 0  0 0 0 0  
c z = k :  :c 0 0 0  0 o]3 cl=[cla 0 0 0 0  0 0 O]. 

-1  0 0 0 0 0  

C,, = - A / ( A  + 2G), c , b  = - ia,(h2 + 8hG + 8G2)/(h + 2G), C,, = - A  a,, 
C,, = - i(h + 2G) ax., a,. 

O & O  0 
0 0  

F,, = - i a a,, X1 
4 b  = - ih(h + 2G)-l azl a,, F,, = 8G(h + G) ( A  + 2G)-' a, ax., a0. 

' iUI,a0w-' iw-' 0 0 
01, w-l 0 0 0 

R,l(at + u; a. w-1) 0 R,' 0 
- u; - ( w / a ,  + 3ia, Ril) 0 - (ia, RJ' 

Q, = 

8-2 
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El, = iwP( U; ax., a, - a, Wl) ,  Elb = w-laZ, a,, El, = 2a, R;l ax., a,, 
Eld = Wl,  Ele = (wa;' - 3iR;l) ax. a,, Elf  = (ia: RJ1 ax, a,. 
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